Pearson Edexcel

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International Advanced Level In Statistics S2 (WST02)
Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023
Question Paper Log Number 72905
Publications Code WST02_01_2306_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

The total number of marks for the paper is 75 .
Edexcel Mathematics mark schemes use the following types of marks:

'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation, e.g. resolving in a particular direction; taking moments about a point; applying a suvat equation; applying the conservation of momentum principle; etc.

The following criteria are usually applied to the equation.
To earn the M mark, the equation
(i) should have the correct number of terms
(ii) each term needs to be dimensionally correct

For example, in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel ' g ' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.
' M ' marks are sometimes dependent (DM) on previous M marks having been earned, e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity - this M mark is often dependent on the two previous M marks having been earned.
' A ' marks
These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. M0 A1 is impossible.
'B' marks
These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).
A and B marks may be f.t. - follow through - marks.
General Abbreviations
These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod means benefit of doubt
- ft means follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao means correct answer only
- cso means correct solution only, i.e. there must be no errors in this part of the question to obtain this mark
- isw means ignore subsequent working
- awrt means answers which round to
- SC means special case
- oe means or equivalent (and appropriate)
- dep means dependent
- indep means independent
- dp means decimal places
- sf means significant figures
- * means the answer is printed on the question paper
- \square means the second mark is dependent on gaining the first mark

All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks
1. (a)(i)	$\begin{aligned} & X \sim \mathrm{~B}(50,0.4) \\ & \mathrm{P}(X=26)=0.9686-0.9427 \text { or }{ }^{50} \mathrm{C}_{26}(0.4)^{26}(0.6)^{24} \end{aligned}$ awrt $\mathbf{0 . 0 2 5 9}$	M1 A1
(ii)	$\begin{aligned} \mathrm{P}(X \geqslant 26)=1-\mathrm{P}(& X \leqslant 25) \\ & =1-0.9427=\text { awrt } \underline{\mathbf{0 . 0 5 7 3}} \end{aligned}$	M1 (2)
(iii)	(From tables) $k=\underline{19}$	B1 (2)
(b)(i)	$J \sim \mathrm{~N}(240,144)$	(1) M1A1
	$\begin{aligned} & \mathrm{P}(X \leqslant 222) \sim \mathrm{P}(J<222.5)=\mathrm{P}\left(Z<\frac{222.5-240}{\sqrt{144}}\right) \\ & \mathrm{P}(Z<-1.46)=1-0.9279=\text { awrt } \underline{\mathbf{0 . 0 7 2 1}-\mathbf{0 . 0 7 2 4}} \end{aligned}$	M1M1 A1
(ii)	n is large (oe) and p is close to 0.5	(5) B1
		$\begin{array}{r} (1) \\ {[11 \text { marks] }} \end{array}$
	Notes	
(a)(i)	M1 Use of tables or ${ }^{50} \mathrm{C}_{26}(p)^{26}(1-p)^{24}$ with $0<p<1$ allow alternative notations for	
	A1 awrt 0.0259 (correct answer scores 2 out of 2)	
(ii)	M1 writing or using $1-\mathrm{P}(X \leqslant 25)$	
	A1 awrt 0.0573 (calc $0.0573437 \ldots$..) (correct answer scores 2 out	f 2)
(iii)	B1 19 cao $k \leqslant 19$ or $k \geqslant 19$ is B0	
(b)(i)	$1^{\text {st }} \mathrm{M} 1$ For writing or using $\mathrm{N}(240, \ldots) \quad$ (May be seen in standardisation)	
	$1^{\text {st }}$ A1 For writing or using $\mathrm{N}(240,144)$ (May be seen in standardisation)	
	$3^{\text {rd }} \mathrm{M} 1 \pm\left(\frac{222 \text { or } 222.5 \text { or } 221.5-\text { their mean }}{\text { their } s d}\right) \text { if distribution not } \mathrm{c}$	early stated,
	then the mean and sd must be correct in the standardisation to score this $2^{\text {nd }} \mathrm{A} 1$ awrt 0.0721 through to awrt 0.0724 (calc $0.0723743 \ldots$) Answer in the range implies all previous marks unless clearly comes method [NB: Use of binomial distribution gives 0.0719$]$	is mark from wrong
	[NB: Use of binomial distribution gives 0.0719]	
(ii)	for n is large allow in words e.g. 'sample is large' allow 0.4 in place of p	
	condone ' $n>30$ ' (or any number > 30)	

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Scheme \& Marks \\
\hline 3. (a) \& \[
\begin{aligned}
\& \int_{2}^{5} \frac{1}{48}\left(x^{2}-8 x+c\right) \mathrm{d} x=1 \\
\& 1=\frac{1}{48}\left[\frac{x^{3}}{3}-4 x^{2}+c x\right]_{2}^{5} \\
\& 1=\frac{1}{48}\left(\left(\frac{5^{3}}{3}-4\left(5^{2}\right)+5 c\right)-\left(\frac{2^{3}}{3}-4\left(2^{2}\right)+2 c\right)\right) \text { or } 48=39-84+3 c \\
\& (\Rightarrow 3 c=93 \Rightarrow) c=31^{*}
\end{aligned}
\] \& M1
M1

A1cso*

(3)

\hline (b) \& $$
\begin{aligned}
& \mathrm{P}(2<X<3)=\frac{1}{48}\left[\frac{x^{3}}{3}-4 x^{2}+31 x\right]_{2}^{3} \\
& \frac{1}{48}\left(\left(\frac{3^{3}}{3}-4\left(3^{2}\right)+31(3)\right)-\left(\frac{2^{3}}{3}-4\left(2^{2}\right)+31(2)\right)\right)=\frac{13}{36} \quad(=\operatorname{awrt} 0.361)
\end{aligned}
$$ \& M1

A1

(2)

\hline (c) \& Less than 3 since ${ }^{\prime \prime} \frac{13}{36}$ " >0.2 \& | B1 |
| :--- |
| (1) |

\hline (d) \& $x=4$ leads to the minimum/lowest value of $\mathrm{f}(x) / \mathrm{f}(x)$ is a positive quadratic \& | B1 |
| :--- |
| (1) |

\hline (e) \& | Considers $x=2$ and $x=5$ by e.g. |
| :--- |
| - $\mathrm{f}(2)=0.39(58 \dot{3})\left[=\frac{19}{48}\right]$ and $\mathrm{f}(5)=0 . \dot{3}\left[=\frac{16}{48}\right]($ so $\mathrm{f}(2)>\mathrm{f}(5))$ |
| - Sketch of $\mathrm{f}(x)$ from $x=2$ to $x=5$ |
| - $x=2$ is further than $x=4$ (then $x=5$) |
| Mode is $x=2$ | \& | M1 |
| :--- |
| A1 |
| (2) [9 marks] |

\hline \& \multicolumn{2}{|l|}{Notes}

\hline (a) \& \multicolumn{2}{|l|}{\multirow[t]{4}{*}{| $1^{\text {st }}$ M1 setting up integral and equating to 1 (condone missing $\mathrm{d} x$) limits not needed $2^{\text {nd }}$ M1 attempting to integrate $\mathrm{f}(x)$ at least one term $x^{n} \rightarrow x^{n+1}$ (need not be $=1$) Use of integration of $\mathrm{f}(x)$ with $\mathrm{F}(2)=0$ and $\mathrm{F}(5)=1$ can score M1M1 A1* cso including use of correct limits. There should be at least one line of working between scoring the $2^{\text {nd }} \mathrm{M} 1$ and arriving at the given answer. |
| :--- |
| Allow a verification method $1^{\text {st }} \mathrm{M} 1$ setting up integral $2^{\text {nd }} \mathrm{M} 1$ attempting to integrate A1cso use of correct limits to show that it integrates to 1 and concluding that $c=31$ |
| M1 for use of integration of $\mathrm{f}(x) x^{n} \rightarrow x^{n+1}$ with correct limits 2 and 3 (ft from their (a)) |
| A1 allow awrt 0.361 (correct answer scores 2 out of 2) |
| B1 less than 3 with correct reasoning. |
| May use their part (b), but must be consistent with 'less than 3 ' |
| If the lower quartile is found awrt 2.67 , allow $\mathrm{LQ} / 2.67<3$ |
| B1 correct reason why the method does not give the correct mode. Allow a sketch of $\mathrm{f}(x)$. Also allow, e.g. 'Kei's method did not consider the end-points' |
| M1 considers end-points |
| A1 mode is 2 cao Answer only scores M0A0. Must have some justification. |}}

\hline (b) \& \&

\hline (c) \& \&

\hline (d)
(e) \& \&

\hline
\end{tabular}

Question Number	Scheme	Marks
5. (a)	$\mathrm{F}(3)=0 \rightarrow \frac{1}{16}\left(3^{2}-6(3)+a\right)=0$	M1
	$a=9$	A1
	$\mathrm{F}(10)=1 \rightarrow \frac{1}{12}\left(100(10)-(5) 10^{2}+c\right)=1$	M1
	$c=-488$	A1
(b)	$\begin{array}{l\|l} \left.\frac{1}{16}\left(5^{2}-6(5)+" 9 "\right)=\frac{1}{12}(5+b) \quad \frac{1}{12}(9+b)=\frac{1}{12}\left(100(9)-5\left(9^{2}\right)+"-488 "\right)\right) \end{array}$	M1
	$b=-2$	A1 (2)
(c)	$\mathrm{P}(6<Y \leqslant 9)=\mathrm{F}(9)-\mathrm{F}(6)$	M1
	$=\frac{1}{12}(9+"-2 ")-\frac{1}{12}(6+"-2 ")$	M1
		A1 (3)
(d)	$\mathrm{f}(\mathrm{y})=\frac{1}{12}$	B1 (1)
(e)	$\mathrm{E}(6 Y-5)=[26.5+] \int_{5}^{9}(6 y-5){ }^{\prime \prime} \frac{1}{12} \mathrm{~d} \mathrm{~d} y$	M1
	$=[26.5+]_{12}^{12}\left[\left(3 y^{2}-5 y\right)\right]_{5}^{9}$	dM1
	$=26.5+\frac{1}{12}\left[\left(3\left(9^{2}\right)-5(9)\right)-\left(3\left(5^{2}\right)-5(5)\right)\right]$	dM1
	$=\frac{233}{6}$	
		[Total 14]
	Notes	
(a)	$1^{\text {st }}$ M1 writing or use of $\mathrm{F}(3)=0$	
	$1^{\text {st }} \mathrm{A} 1 a=9$ cao	
	$2^{\text {nd }} \mathrm{M} 1$ writing or use of $\mathrm{F}(10)=1$	
	$2^{\text {nd }} \mathrm{A} 1 c=-488$ cao	
(b)	M1 use of $\mathrm{F}(5)=\mathrm{F}(5)\left[=\frac{1}{4}\right]$ or $\mathrm{F}(9)=\mathrm{F}(9)\left[=\frac{7}{12}\right] \mathrm{ft}$ their values from (a)	
	A1 $b=-2$ cao	
(c)	$1^{\text {st }} \mathrm{M} 1$ writing or using $\mathrm{F}(9)-\mathrm{F}(6)$ (may be implied by $2^{\text {nd }} \mathrm{M} 1$)	
	$2^{\text {nd }} \mathrm{M} 1$ substituting 9 and 6 into $\mathrm{F}(x)$ with their value of b	
	allow $\frac{1}{12}\left(100(9)+5\left(9^{2}\right)+"-488 "\right)-\frac{1}{12}(6+"-2 ")$ with their value of b and their	alue of c
	A1 $\frac{1}{4}$ oe	
(d)	B1 $\frac{1}{12}$	
(e)	$1^{\text {st }} \mathrm{M} 1$ use of $\int_{5}^{9}(6 y-5)^{\prime \prime} \frac{1}{12}^{12} \mathrm{~d} y$ (ignore limits)	
	$2^{\text {nd }}$ M1 (dep on $1^{\text {st }}$ M1) attempt to integrate $(6 y-5) " \frac{1}{12}$ " with at least one $y^{n} \rightarrow y^{n+1}$	
	$\left.3^{\text {rd }} \mathrm{M} 1\left(\operatorname{dep} \text { on } 1^{\mathrm{st}} \mathrm{M} 1\right) 26.5+\int_{5}^{9}(6 y-5)\right)^{1 \frac{1}{12}} \mathrm{~d} \text { d }$	
	A1 awrt 38.8	
SC:	Answer only or correct answer not using given information scores M0M1M1A1	

